Applied Database Management

Introduction			
DB Design	Considerations		
Built in data types	MS-SQL, Oracle, MySQL		
DB Structure	DB Files		
	Pages & Extents		

COMP283-Lecture 2 Main Database Files:

MS-SQL	Oracle	MySQL
Primary Data (MDB)	Tablespaces	FRM
Transacton Logs (LDB)	Transaction Logs	Transaction Logs
Secondary Data (NDB)	Redo logs	MYD
TempDB	Control Files	MYI

COMP283-Lecture 2 Main Database Files:

- In Oracle, a Database Instance is a set of memory structures that manage database files associated with a single database.
- Oracle can be configured to use "raw" disks. (raw??)

Main Database Files:

- Oracle ASM: Automatic Storage Management
- What are some advantages of using ASM vs standard filesystem?

DB Design: Assessing file store requirements

- Assess current and expected storage capacity
 - Disk Space
 - Disk throughput
 - Location storage requirements

DB Design: Integer Data Types

	MS-SQL	Oracle	MySQL
bit	0 or 1 1 byte		0 or 1 up to 8 bytes
tinyint	0255 1 byte		-127127 or 0255 1 byte
smallint	-2 ¹⁵ 2 ¹⁵ -1 2 bytes		-2 ¹⁵ 2 ¹⁵ or 02 ¹⁶ -1 2 bytes
mediumint			-2 ²³ 2 ²³ or 02 ²⁴ -1 3 bytes
Int(eger)	-2 ³¹ 2 ³¹ -1 4 bytes	-2 ³⁷ 2 ³⁷ or 0 2 ³⁸ -1 Up to 5 bytes	-2 ³¹ 2 ³¹ or 02 ³² -1 4 bytes
bigint	-2 ⁶³ 2 ⁶³ -1 8 bytes		-2 ⁶³ 2 ⁶³ -1 or 02 ⁶⁴ -1 8 bytes

DB Design: Real Number Data Types

	MS-SQL	Oracle	MySQL
numeric/ decimal	-2 ³⁸ +1 to 2 ³⁸ -1 5 to 17 bytes		-10 ⁶⁴ +1 to 10 ⁶⁴ -1 or 0 to 10 ⁶⁵ -1 Variable bytes
number		-2 ³⁸ +1 to 2 ³⁸ -1 Variable bytes	
smallmoney	-214748.3648 to 214748.3647 4 bytes		
money	-922337203685477.5808 to 922337203685477.5807 8 Bytes		
real	- 3.40E+38 to -1.18E-38, 0 and 1.18E-38 to 3.40E+38 4 bytes		-1.79308E38 to -2.23308E38, 0, and 2.23308E38 to 1.79308E38 4 or 8 bytes
float(n)	- 1.79E+308 to -2.23E-308, 0 and 2.23E-308 to 1.79E+308 4 or 8 bytes		-3.438E38 to -1.1838E38, 0, and 1.1838E38 to 3.438E38 4 bytes
double			-1.79308E38 to -2.23308E38, 0, and 2.23308E38 to 1.79308E38 4 or 8 bytes

DB Design: Character Data Types

	MS-SQL	Oracle	MySQL
CHAR(n)	n = 1 to 8000 bytes	n=1 to 2000 bytes	n=1 to 255 bytes
VARCHAR(n)	n = 1 to 8000 bytes or max (2 ³¹ -1 bytes)		n=1 to 65535 bytes (+ 1 or 2 length bytes)
VARCHAR2(n)		n=1 to 4000 bytes	
NCHAR(n)	n=1 to 4000 1 to 8000 bytes	n=1 to 2000 bytes	n=1 to 255 bytes
NVARCHAR(n)	n = 1 to 4000 (3 to 8002 bytes) or max (2 ³¹ -1 bytes)		
NVARCHAR2(n)		n=1 to 4000 bytes	

DB Design: Large Object Data Types

	MS-SQL	Oracle	MySQL
Binary(n)	1 to 8000 bytes		
Varbinary(n)	1 to 8000 bytes or max (2 ³¹ -1 bytes)		
blob		8 to 128 TBytes	65535 Bytes

DB Design: Date & Time Data Types

	MS-SQL	Oracle	MySQL
smalldatetime	Jan 1, 1900 to Jun 6, 2079 (4 bytes)		
datetime	Jan 1, 0001 to Dec 31, 9999 (8 bytes)		Jan 1, 1000, 00:00:00 to Dec 31, 9999, 23:59:59
Date	Jan 1, 0001 to Dec 31, 9999 (3 bytes)	Jan 1, 4712, 00:00:00 BC to Dec 31,9999 23:59:59	Jan 1, 1000 to Dec 31, 9999
time	00:00:00.0000000 to 23:59:59.9999999 (5 bytes)		-838:59:59 to 838:59:59 (as time difference)
datetimeoffset	Jan 1, 0001, 00:00:00 to Dec 31, 9999 23:59:59.9999999 (10 bytes)		
datetime2	Jan 1, 0001, 00:00:00 to Dec 31, 9999 23:59:59.9999999 (varies)		10

DB Design: Data and Transaction Log Files in MS-SQL

- The primary data files (.MDF).
- Secondary data files (.NDF).
 - Filegroups.
- Log Data Files (.LDF).

DB Design: Pages & Extents in MS-SQL

- A Page is the smallest unit of data that can be stored in a data file.
- An Extent is a group of 8 contiguous pages.
 - Uniform Extents
 - Mixed Extents

DB Design: Database Snapshot files in MS-SQL

- A database snapshot provides a read-only, static view of a source database as it existed at snapshot creation, minus any uncommitted transactions.
- Database snapshots are dependent on the source database and must be on the same server instance as the database.
- If that database becomes unavailable for any reason, all of its database snapshots also become unavailable.
- Useful Can revert a database using snapshots.
- But why the limitations?

DB Design: Database Snapshot files in MS-SQL

- Each database snapshot is a Sparse file.
 - Initially an empty file allocated no space.
- Each page of the file is only "filled out" when the original data in that page of the database changes.
 - known as "Copy on Write"
- But why?

DB Design: Database Capacity

- Define a horizon.
- Design the database server with the right storage of current and expected use.
- Design the database with the right sized data files for the current data and expected future use.

Conclusion

- Main database file types.
- Introduced factors to be considered for DB design
- Identified built in data types and the differences between different DBMS.
- Talked about Sparse Files and Copy on Write